Potential benefits and risks of omega-3 fatty acids supplementation to patients with COVID-19.

Nutritional Genomics and Inflammation Laboratory, Department of Nutrition, School of Public Health, University of São Paulo, 01246-904, São Paulo, Brazil; Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Center of São Paulo Research Foundation, São Paulo, 05468-140, Brazil. LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil. Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Center of São Paulo Research Foundation, São Paulo, 05468-140, Brazil; LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil. Department of Cell and Developmental Biology. Institute of Biomedical Sciences. University of São Paulo, São Paulo, Brazil. Food Research Center (FoRC), CEPID-FAPESP, Research Innovation and Dissemination Center of São Paulo Research Foundation, São Paulo, 05468-140, Brazil; LADAF, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo-SP, Brazil. Electronic address: inar@usp.br.

Free radical biology & medicine. 2020;:190-199

Abstract

Studies have shown that infection, excessive coagulation, cytokine storm, leukopenia, lymphopenia, hypoxemia and oxidative stress have also been observed in critically ill Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) patients in addition to the onset symptoms. There are still no approved drugs or vaccines. Dietary supplements could possibly improve the patient's recovery. Omega-3 fatty acids, specifically eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), present an anti-inflammatory effect that could ameliorate some patients need for intensive care unit (ICU) admission. EPA and DHA replace arachidonic acid (ARA) in the phospholipid membranes. When oxidized by enzymes, EPA and DHA contribute to the synthesis of less inflammatory eicosanoids and specialized pro-resolving lipid mediators (SPMs), such as resolvins, maresins and protectins. This reduces inflammation. In contrast, some studies have reported that EPA and DHA can make cell membranes more susceptible to non-enzymatic oxidation mediated by reactive oxygen species, leading to the formation of potentially toxic oxidation products and increasing the oxidative stress. Although the inflammatory resolution improved by EPA and DHA could contribute to the recovery of patients infected with SARS-CoV-2, Omega-3 fatty acids supplementation cannot be recommended before randomized and controlled trials are carried out.

Methodological quality

Publication Type : Review

Metadata